Altered Composition of Bone as Triggered by Irradiation Facilitates the Rapid Erosion of the Matrix by Both Cellular and Physicochemical Processes

نویسندگان

  • Danielle E. Green
  • Benjamin J. Adler
  • Meilin Ete Chan
  • James J. Lennon
  • Alvin S. Acerbo
  • Lisa M. Miller
  • Clinton T. Rubin
چکیده

Radiation rapidly undermines trabecular architecture, a destructive process which proceeds despite a devastated cell population. In addition to the 'biologically orchestrated' resorption of the matrix by osteoclasts, physicochemical processes enabled by a damaged matrix may contribute to the rapid erosion of bone quality. 8w male C57BL/6 mice exposed to 5 Gy of Cs(137) γ-irradiation were compared to age-matched control at 2d, 10d, or 8w following exposure. By 10d, irradiation had led to significant loss of trabecular bone volume fraction. Assessed by reflection-based Fourier transform infrared imaging (FTIRI), chemical composition of the irradiated matrix indicated that mineralization had diminished at 2d by -4.3±4.8%, and at 10d by -5.8±3.2%. These data suggest that irradiation facilitates the dissolution of the matrix through a change in the material itself, a conclusion supported by a 13.7±4.5% increase in the elastic modulus as measured by nanoindentation. The decline in viable cells within the marrow of irradiated mice at 2d implies that the immediate collapse of bone quality and inherent increased risk of fracture is not solely a result of an overly-active biologic process, but one fostered by alterations in the material matrix that predisposes the material to erosion.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mechanism of Calf thymus DNA radioprotection by sucrose: A combined effect of scavenging action and altered water

Background: Development of safe radioprotector is a challenging task. In this study radioprotective effect of sucrose has been demonstrated in calf thymus DNA (CtDNA). Sucrose is a free radical scavenger and also acts as osmolyte and therefore can influence the water activity around DNA and effects of radiation on DNA. Hoechst 33258 was used to probe the possible alteration in physicochemical p...

متن کامل

Transcriptional Coactivator CBP Facilitates Transcription Initiation and Reinitiation of HTLV-I and Cyclin D2 Promoter

HTLV-I is the etiologic agent for adult T-cell leukemia/lymphoma (ATL) and HTLV-I-associated myelopathy/tropical spastic paraparesis (HAM/TSP). Taxi, the major activator of this virus, is a 40- kDa (353 amino acid) phosphoprotein, predominantly localized in the nucleus of the host cell, which functions to trans-activate both viral and cellular promoters. Recently it has been shown that HTLV-I a...

متن کامل

طبقه‌بندی و تعیین شاخص‌های فرسایش‌پذیری مارن‌های جنوب شرق پیشوای ورامین با استفاده از دستگاه شبیه‌ساز باران

Introduction: Marl is one of the most important sedimentary units are in Iran because of the physicochemical characteristics and high rate of erodibility. These properties caused large civil damages and environmental impacts and so, the study of erosion and erodibility of the marl units is necessary. One of the most important points about marls is elements in them and grain size nature and ...

متن کامل

Kinetics of cell death triggered photothermally using folate-conjugated gold nanoparticles and various laser irradiation conditions in cancer cells

Introduction: In this study, we explore in detail cell-specific targeting efficacy of nano-photo-thermal therapy (NPTT) method and the resulting responses that are induced by variable laser intensities and exposure times in cancer cells to induce selective apoptosis. We delineate the synthesis of a high-yielding synthetic F-AuNPs by tailoring the surface of gold nanoparticles ...

متن کامل

YCF and YAP gene expressions in yeast cells after irradiation combined with mercury treatment

Background: All aerobically growing organisms suffer from exposure to oxidative stress, caused by partially reduced forms of molecular oxygen, known as reactive oxygen species (ROS). These are highly reactive and capable of damaging cellular constituents such as DNA, lipids and proteins. Consequently, cells from many different organisms have evolved mechanisms to protect their components...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013